123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- import pandas as pd
- from matplotlib import pyplot as plt
- from matplotlib.pyplot import MultipleLocator
- import os
- import numpy as np
- from LIB.BACKEND import DBManager
- import pymysql
- import datetime
- #数据库配置
- # host='rm-uf6bt29r702r14jh4.mysql.rds.aliyuncs.com'
- # port=3306
- # user='u_devlid'
- # password='EgL#EuQOlRqGml'
- # db='db_lidian'
- # mysql = pymysql.connect (host=host, user=user, password=password, port=port, database=db)
- # cursor = mysql.cursor()
- # param='vin,sn,pack_model_code,cell_battery_type'
- # sql = "select %s from %s" %(param,'vin_pack_cell_info')
- # cursor.execute(sql)
- # res = cursor.fetchall()
- # df_vin_pack_cell= pd.DataFrame(res,columns=param.split(','))
- # df_vin_pack_cell=df_vin_pack_cell.set_index('vin')
- # vin='LUZAGAAA4KA003771'
- # param='time_st,time_sp,sn,method,short_current'
- # sql = "select %s from %s where sn='02YPEAG029603HA4D1302525 '" %(param,'algo_mid_intershort_result')
- # cursor.execute(sql)
- # res = cursor.fetchall()
- # df_short= pd.DataFrame(res,columns=param.split(','))
- # df_short.to_excel(r'C:\Users\zldc\project\User\spf\hz-application-algo\USER\spf\100Result\safetywaring\\'+vin+'内短路结果.xlsx')
- # 内短路
- filepath=r'D:\01WorkSpace\项目\Alibaba\data\内短路数据_2022-01-10_2022-02-10'
- files=os.listdir(filepath)
- # files=[vin+'内短路结果.xlsx']
- for filename in files:
- # if '内短路' in filename:
- vin=filename[:-4]
- df_short= pd.read_csv(filepath+'\\'+filename,encoding='gb18030')
- df_short['time_sp']=pd.to_datetime(df_short['time_sp'], format='%Y-%m-%d %H:%M:%S')
- cellnums=len(eval(df_short.loc[0,'short_current']))
- cellvolt_name=['单体'+str(x) for x in range(1,cellnums+1)]
- df=pd.DataFrame(columns=cellvolt_name)
- for i in range(len(df_short)):
- df.loc[i]=eval(df_short.loc[i,'short_current'])
- plt.figure(figsize=(20,8))
- for i in range(df.shape[1]):
- x=df_short['time_sp']
- y=df['单体'+str(i+1)]
- plt.plot(x, y,marker='*',markersize=15)
- plt.plot(x, [-20]*len(x),c='r')
- plt.title(filename[0:17],fontsize=25)
- plt.xlabel('时间', fontsize=20)
- plt.ylabel('内短路电流', fontsize=20)
- plt.xticks(fontsize=20,rotation=10)
- plt.yticks(fontsize=20)
- # plt.xlim(0,120)
- plt.ylim(-25,30)
- # plt.scatter( xtime1,VoltChange[volt_column[i]],marker='o')
- # plt.legend(bbox_to_anchor=(1, 0), loc=3, borderaxespad=0)
- plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
- plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
- plt.savefig(filepath+'\\'+vin+"内短路.png")
- plt.show()
- plt.close()
-
- # df_short= pd.read_excel(filepath+'\\'+filename)
- # cellnums=len(eval(df_short.loc[0,'short_current']))
- # cellvolt_name=['单体'+str(x) for x in range(1,cellnums+1)]
- # plt.figure(figsize=(16,9))
- # for i in range(len(df_short)):
- # x=list(range(1,cellnums+1))
- # y=eval(df_short.loc[i,'short_current'])
- # plt.plot(x, y,label=df_short.loc[i,'time_st'],marker='*',markersize=15)
- # plt.title(filename[0:17],fontsize=18)
- # plt.xlabel('电芯序号', fontsize=15)
- # plt.ylabel('内短路电流', fontsize=15)
- # plt.xticks(fontsize=15)
- # plt.yticks(fontsize=15)
- # # plt.xlim(0,120)
- # # plt.ylim(-20,20)
- # # plt.scatter( xtime1,VoltChange[volt_column[i]],marker='o')
- # plt.legend(bbox_to_anchor=(1, 0), loc=3, borderaxespad=0)
- # plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
- # plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
- # plt.savefig(filepath+'\\'+filename[0:17]+".png")
- # plt.show()
- # plt.close()
- # #离群度
- # filepath=r'D:\01WorkSpace\项目\Alibaba\data\原始数据_2022-01-10_2022-02-10'
- # files=os.listdir(filepath)
- # for filename in files:
- # # if '内短路' in filename:
- # vin=filename[:-4]
- # df_bms= pd.read_csv(filepath+'\\'+filename,encoding='gb18030')
- # df_bms=df_bms.replace('', np.nan)
- # # df_bms.sort_values(by="time" , inplace=True, ascending=True)
- # df_bms['time']=pd.to_datetime(df_bms['time'], format='%Y-%m-%d %H:%M:%S')
- # now_time='2022-4-3 14:00:00'
- # now_time=datetime.datetime.strptime(now_time,'%Y-%m-%d %H:%M:%S')
- # start_time='2022-1-25 00:00:00'
- # end_time='2022-2-1 00:00:00'
- # start_time=datetime.datetime.strptime(start_time,'%Y-%m-%d %H:%M:%S')
- # end_time=datetime.datetime.strptime(end_time,'%Y-%m-%d %H:%M:%S')
- # df_bms=df_bms[(df_bms['time']>start_time) & (df_bms['time']<end_time)]
- # CellVoltNums = len((df_bms.iloc[0]['cell_volt']).split(',')) # 找出电芯数量出现最多的次数
- # cellvolt_name=['CellVoltage'+str(x) for x in range(1,CellVoltNums+1)]
- # df_volt=pd.DataFrame(df_bms['cell_volt'].str.split(',').tolist()).iloc[:,list(range(CellVoltNums))]
- # df_volt.columns = cellvolt_name
- # df_volt=df_volt.astype('float')
- # df_volt.index=df_bms['time']
- # # df_volt=df_volt[(df_volt>2) &(df_volt<4.5)]
- # # df_volt=df_volt['2022-1-26 00:00:00':'2022-1-29 18:00:00']
- # plt.figure(figsize=(16,9))
- # for i in cellvolt_name[50:61]:
- # x=df_volt.index
- # y=df_volt[i]
- # plt.plot(x, y,label=i)
- # plt.title(vin,fontsize=18)
- # plt.xlabel('时间', fontsize=15)
- # plt.ylabel('电压', fontsize=15)
- # plt.xticks(fontsize=15)
- # plt.yticks(fontsize=15)
- # # plt.xlim(0,120)
- # # plt.ylim(-20,20)
- # # plt.scatter( xtime1,VoltChange[volt_column[i]],marker='o')
- # plt.legend(bbox_to_anchor=(1, 0), loc=3, borderaxespad=0)
- # plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
- # plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
- # plt.savefig(filepath+'\\'+vin+"离群度.png")
- # plt.show()
- # plt.close()
|