123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- #热失控预警:PCA异常指数
- #预测及异常预警
- from LIB.BACKEND import DBManager
- dbManager = DBManager.DBManager()
- import datetime
- import joblib
- import pandas as pd
- import pymysql
- from LIB.MIDDLE.CellStateEstimation.Common import log
- from anomalyPCA import *
- dataSOH = pd.read_excel('sn-20210903.xlsx',sheet_name='sn-20210903')
- fileNames = dataSOH['sn']
- fileNames = list(fileNames)
- l = len(fileNames)
- now_time=datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') #type: str
- now_time=datetime.datetime.strptime(now_time,'%Y-%m-%d %H:%M:%S') #type: datetime
- start_time=now_time-datetime.timedelta(hours=6)
- end_time=str(now_time)
- start_time=str(start_time)
- mylog=log.Mylog('log.txt','error')
- mylog.logcfg()
- #数据库配置
- host='rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com'
- port=3306
- user='qx_algo_readonly'
- password = 'qx@123456'
- #读取故障结果库中code==119且end_time='0000-00-00 00:00:00'...............................
- db='safety_platform'
- mysql = pymysql.connect (host=host, port=port, user=user, password=password, database=db)
- cursor = mysql.cursor()
- param='start_time,end_time,product_id,code,level,info,advice'
- tablename='all_fault_info'
- sql = "select %s from %s where code='C493' and end_time='0000-00-00 00:00:00'" %(param,tablename)
- cursor.execute(sql)
- res = cursor.fetchall()
- df_diag_ram= pd.DataFrame(res,columns=param.split(','))
- cursor.close()
- mysql.close()
- anomalies=pd.DataFrame()
- df_res=pd.DataFrame(columns=['start_time','end_time','product_id','code','level','info','advice'])
- for k in range(l):
- try:
- sn = fileNames[k]
- df_diag_ram_sn=df_diag_ram[df_diag_ram['product_id']==sn]
- df_data = dbManager.get_data(sn=sn, start_time=start_time, end_time=end_time ,data_groups=['bms'])
- data_test = df_data['bms']
- data_test=data_test[data_test['SOC[%]']>20]
- if len(data_test)>15:
- pca1 = joblib.load('pca1_'+sn+'.m')
- pca2 = joblib.load('pca2_'+sn+'.m')
- res1 = pd.read_csv('res1_'+sn+'.csv',encoding='gbk')
- res2 = pd.read_csv('res2_'+sn+'.csv',encoding='gbk')
- pred1,pred2=prediction(data_test,pca1,pca2)
- pred1=pred1.reset_index()
- pred2=pred2.reset_index()
- outliers1=detect_outliers(res1,pred1,threshold=30)
- outliers2=detect_outliers(res2,pred2,threshold=16)
- if (len(outliers1)>0) & (len(outliers2)>0):
- outliers=check_anomaly(outliers1,outliers2,res2)
- if len(outliers)>5:
- outliers['sn']=sn
- outliers=outliers.reset_index()
- anomalies=anomalies.append(outliers)
- u_th=boxplot_fill(res2)
- outliers3=pred2[pred2['低压差']>u_th]
- if df_diag_ram_sn.empty:
- product_id=sn
- start_time=outliers.loc[0,'时间']
- start_time=start_time+'0:00'
- if outliers.loc[outliers.index[-1],'时间'] == pred1.loc[pred1.index[-1],'时间']:
- end_time='0000-00-00 00:00:00'
- elif outliers1.loc[outliers1.index[-1],'时间'] == outliers3.loc[outliers3.index[-1],'时间']:
- end_time='0000-00-00 00:00:00'
- else:
- end_time=outliers.loc[outliers.index[-1],'时间']
- end_time=end_time+'0:00'
- code='C493'
- level=4
- info='热失控预警'
- advice='建议返厂维修'
- df_res=df_res.append({'start_time':start_time, 'end_time':end_time,'product_id':product_id, 'code':code, 'level':level, 'info':info,'advice':advice},ignore_index=True)
- with open(r'D:\Platform\platform_python\data_analyze_platform\USER\spf\01qixiang\06BatSafetyAlarm\热失控报警.txt','a') as file:
- file.write(str(tuple(df_res.iloc[-1]))+'\n')
- else:
- if outliers.loc[outliers.index[-1],'时间'] == pred1.loc[pred1.index[-1],'时间']:
- end_time='0000-00-00 00:00:00'
- elif outliers1.loc[outliers1.index[-1],'时间'] == outliers3.loc[outliers3.index[-1],'时间']:
- end_time='0000-00-00 00:00:00'
- else:
- end_time=outliers.loc[outliers.index[-1],'时间']
- end_time=end_time+'0:00'
- df_diag_ram_sn['end_time']=end_time
- with open(r'D:\Platform\platform_python\data_analyze_platform\USER\spf\01qixiang\06BatSafetyAlarm\热失控报警.txt','a') as file:
- file.write(str(tuple(df_diag_ram_sn.iloc[-1]))+'\n')
-
-
- except Exception as e:
- print(repr(e))
- mylog.logopt(sn,e)
- pass
|