main_detection.py 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110
  1. #热失控预警:PCA异常指数
  2. #预测及异常预警
  3. from LIB.BACKEND import DBManager
  4. dbManager = DBManager.DBManager()
  5. import datetime
  6. import joblib
  7. import pandas as pd
  8. import pymysql
  9. from LIB.MIDDLE.CellStateEstimation.Common import log
  10. from anomalyPCA import *
  11. dataSOH = pd.read_excel('sn-20210903.xlsx',sheet_name='sn-20210903')
  12. fileNames = dataSOH['sn']
  13. fileNames = list(fileNames)
  14. l = len(fileNames)
  15. now_time=datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') #type: str
  16. now_time=datetime.datetime.strptime(now_time,'%Y-%m-%d %H:%M:%S') #type: datetime
  17. start_time=now_time-datetime.timedelta(hours=6)
  18. end_time=str(now_time)
  19. start_time=str(start_time)
  20. mylog=log.Mylog('log.txt','error')
  21. mylog.logcfg()
  22. #数据库配置
  23. host='rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com'
  24. port=3306
  25. user='qx_algo_readonly'
  26. password = 'qx@123456'
  27. #读取故障结果库中code==119且end_time='0000-00-00 00:00:00'...............................
  28. db='safety_platform'
  29. mysql = pymysql.connect (host=host, port=port, user=user, password=password, database=db)
  30. cursor = mysql.cursor()
  31. param='start_time,end_time,product_id,code,level,info,advice'
  32. tablename='all_fault_info'
  33. sql = "select %s from %s where code='C493' and end_time='0000-00-00 00:00:00'" %(param,tablename)
  34. cursor.execute(sql)
  35. res = cursor.fetchall()
  36. df_diag_ram= pd.DataFrame(res,columns=param.split(','))
  37. cursor.close()
  38. mysql.close()
  39. anomalies=pd.DataFrame()
  40. df_res=pd.DataFrame(columns=['start_time','end_time','product_id','code','level','info','advice'])
  41. for k in range(l):
  42. try:
  43. sn = fileNames[k]
  44. df_diag_ram_sn=df_diag_ram[df_diag_ram['product_id']==sn]
  45. df_data = dbManager.get_data(sn=sn, start_time=start_time, end_time=end_time ,data_groups=['bms'])
  46. data_test = df_data['bms']
  47. data_test=data_test[data_test['SOC[%]']>20]
  48. if len(data_test)>15:
  49. pca1 = joblib.load('pca1_'+sn+'.m')
  50. pca2 = joblib.load('pca2_'+sn+'.m')
  51. res1 = pd.read_csv('res1_'+sn+'.csv',encoding='gbk')
  52. res2 = pd.read_csv('res2_'+sn+'.csv',encoding='gbk')
  53. pred1,pred2=prediction(data_test,pca1,pca2)
  54. pred1=pred1.reset_index()
  55. pred2=pred2.reset_index()
  56. outliers1=detect_outliers(res1,pred1,threshold=30)
  57. outliers2=detect_outliers(res2,pred2,threshold=16)
  58. if (len(outliers1)>0) & (len(outliers2)>0):
  59. outliers=check_anomaly(outliers1,outliers2,res2)
  60. if len(outliers)>5:
  61. outliers['sn']=sn
  62. outliers=outliers.reset_index()
  63. anomalies=anomalies.append(outliers)
  64. u_th=boxplot_fill(res2)
  65. outliers3=pred2[pred2['低压差']>u_th]
  66. if df_diag_ram_sn.empty:
  67. product_id=sn
  68. start_time=outliers.loc[0,'时间']
  69. start_time=start_time+'0:00'
  70. if outliers.loc[outliers.index[-1],'时间'] == pred1.loc[pred1.index[-1],'时间']:
  71. end_time='0000-00-00 00:00:00'
  72. elif outliers1.loc[outliers1.index[-1],'时间'] == outliers3.loc[outliers3.index[-1],'时间']:
  73. end_time='0000-00-00 00:00:00'
  74. else:
  75. end_time=outliers.loc[outliers.index[-1],'时间']
  76. end_time=end_time+'0:00'
  77. code='C493'
  78. level=4
  79. info='热失控预警'
  80. advice='建议返厂维修'
  81. df_res=df_res.append({'start_time':start_time, 'end_time':end_time,'product_id':product_id, 'code':code, 'level':level, 'info':info,'advice':advice},ignore_index=True)
  82. with open(r'D:\Platform\platform_python\data_analyze_platform\USER\spf\01qixiang\06BatSafetyAlarm\热失控报警.txt','a') as file:
  83. file.write(str(tuple(df_res.iloc[-1]))+'\n')
  84. else:
  85. if outliers.loc[outliers.index[-1],'时间'] == pred1.loc[pred1.index[-1],'时间']:
  86. end_time='0000-00-00 00:00:00'
  87. elif outliers1.loc[outliers1.index[-1],'时间'] == outliers3.loc[outliers3.index[-1],'时间']:
  88. end_time='0000-00-00 00:00:00'
  89. else:
  90. end_time=outliers.loc[outliers.index[-1],'时间']
  91. end_time=end_time+'0:00'
  92. df_diag_ram_sn['end_time']=end_time
  93. with open(r'D:\Platform\platform_python\data_analyze_platform\USER\spf\01qixiang\06BatSafetyAlarm\热失控报警.txt','a') as file:
  94. file.write(str(tuple(df_diag_ram_sn.iloc[-1]))+'\n')
  95. except Exception as e:
  96. print(repr(e))
  97. mylog.logopt(sn,e)
  98. pass