123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- import pandas as pd
- import numpy as np
- from scipy.signal import savgol_filter
- from sklearn.preprocessing import RobustScaler
- from sklearn.decomposition import PCA
- import matplotlib.pyplot as plt
- def makedataset(df_data):
- df_data=df_data.drop(['Unnamed: 0','总电流[A]','GSM信号','外电压','单体压差','SOH[%]','开关状态','充电状态','故障等级','故障代码','绝缘电阻','上锁状态','加热状态','单体均衡状态','总输出状态'],axis=1,errors='ignore')
- for i in range(1,21):
- df_data=df_data[(df_data['单体电压'+str(i)]>2200) & (df_data['单体电压'+str(i)]<4800)]
- df_data=df_data[df_data['SOC[%]']>12]
- df_data['时间']=[df_data.loc[i,'时间戳'][0:15] for i in df_data.index]
- df_data=df_data.groupby('时间').mean()
- for k in df_data.columns:
- df_data[k]=savgol_filter(df_data[k],3,2)
- return df_data
- def process(data_set):
- features=data_set.columns
- sX=RobustScaler(copy=True)
- data_set2=data_set.copy()
- data_set2.loc[:,features]=sX.fit_transform(data_set2[features])
- return data_set2
- def anomalyScores(originalDF,reducedDF):
- loss=np.sum((np.array(originalDF)-np.array(reducedDF))**2,axis=1)
- loss=pd.Series(data=loss,index=originalDF.index)
- loss=(loss-np.min(loss))/(np.max(loss)-np.min(loss))
- return loss
- def anomalyPCA(x_train_pro):
- n_components=4
- whiten=True
- random_state=2
- pca=PCA(n_components=n_components,whiten=whiten,random_state=random_state)
- pca.fit(x_train_pro)
- return pca
- def transform(df_data_pro,model,df_data):
- #降维
- X_train=model.transform(df_data_pro)
- X_train=pd.DataFrame(data=X_train,index=df_data_pro.index)
- #还原
- X_train_inverse=model.inverse_transform(X_train)
- X_train_inverse=pd.DataFrame(data=X_train_inverse,index=df_data_pro.index)
- #异常指数
- anomalyScoresModel=anomalyScores(df_data_pro,X_train_inverse)
- anomalyScoresModel=savgol_filter(anomalyScoresModel,15,3)
- df_data2=df_data.copy()
- df_data2['anomalyScores_'+str(model)]=anomalyScoresModel
- return df_data2
- def detect_outliers(data,threshold=3):
- anomaly=data['anomalyScores_PCA(n_components=4, random_state=2, whiten=True)']
- mean_d=np.mean(anomaly.values)
- std_d=np.std(anomaly.values)
- outliers=pd.DataFrame()
- for k in anomaly.index:
- z_score= (anomaly[k]-mean_d)/std_d
- if np.abs(z_score) >threshold:
- outliers=outliers.append(data[anomaly.values==anomaly[k]])
- return outliers
- def detect_outliers2(data,pred,threshold=3):
- anomaly=data['anomalyScores_PCA(n_components=4, random_state=2, whiten=True)']
- anomalypred=pred['anomalyScores_PCA(n_components=4, random_state=2, whiten=True)']
- mean_d=np.mean(anomaly.values)
- std_d=np.std(anomaly.values)
- outliers2=pd.DataFrame()
- for k in anomalypred.index:
- z_score= (anomalypred[k]-mean_d)/std_d
- if np.abs(z_score) >threshold:
- outliers2=outliers2.append(pred[anomalypred.values==anomalypred[k]])
- return outliers2
|